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Abstract: The objective, connotations and research issues of big geodata mining were dis-
cussed to address its significance to geographical research in this paper. Big geodata may be 
categorized into two domains: big earth observation data and big human behavior data. A 
description of big geodata includes, in addition to the “5Vs” (volume, velocity, value, variety 
and veracity), a further five features, that is, granularity, scope, density, skewness and preci-
sion. Based on this approach, the essence of mining big geodata includes four aspects. First, 
flow space, where flow replaces points in traditional space, will become the new presentation 
form for big human behavior data. Second, the objectives for mining big geodata are the 
spatial patterns and the spatial relationships. Third, the spatiotemporal distributions of big 
geodata can be viewed as overlays of multiple geographic patterns and the characteristics of 
the data, namely heterogeneity and homogeneity, may change with scale. Fourth, data mining 
can be seen as a tool for discovery of geographic patterns and the patterns revealed may be 
attributed to human-land relationships. The big geodata mining methods may be categorized 
into two types in view of the mining objective, i.e., classification mining and relationship min-
ing. Future research will be faced by a number of issues, including the aggregation and 
connection of big geodata, the effective evaluation of the mining results and the challenge for 
mining to reveal “non-trivial” knowledge. 
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1  Introduction 
After identifying the challenges and opportunities that massive data would bring to computer 
science and other disciplines, researchers in computer science some 30 years ago proposed 
the term data mining. In 1995, Li and Cheng (1995) referred to data mining of spatial data as 
“knowledge discovery from GIS databases”. Much later, Harvey and Han (2009) introduced 
the term “geographic data mining and knowledge discovery,” which marked the substantive 
intersection of geography and data mining technology. Being an important means for dis-
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covery of geographic patterns, geographic data mining has been widely recognized by ge-
ographers. In the subsequent decade, although remarkable progresses have been made in 
methodological research, little new convincing knowledge regarding geography has been 
revealed. With the advent of big data, a stream of landmark results have been generated, 
such as human mobility prediction based on mobile phone data (Song et al., 2010), predic-
tion of influenza epidemics using search engines (Ginsberg et al., 2009) as well as deep 
learning algorithms and convolutional neural networks (Silver et al., 2016; Silver et al., 
2017). These developments not only go against common sense, but more importantly, they 
demonstrate the driving force and momentum brought by application of big data to scientific 
discovery. Without exception, big data has had a huge impact on geography, forcing geog-
raphers to think carefully about key questions such as: What is the nature of big geodata 
mining? What is the relationship between big geodata and geography? What role can big 
geodata play in the development of geography? To answer the above questions, this paper 
considers the concept of big geodata in terms of connotations and denotations, characteris-
tics, core issues and methods. Accordingly, the paper is organized into the following sections. 
Section 1 explains the connotations and denotations of big geodata. In section 2, the charac-
teristics of big geodata are analyzed in a systematic manner. In the next section, the core 
issues of big geodata mining are summarized to reveal the nature of the subject area. In sec-
tion 4, big geodata mining methods are classified in light of the mining tasks. Finally, the 
development and challenges facing big geodata mining are outlined. 

2  Connotations and denotations of big geodata 
Although big data has become a hot topic in many disciplines, the definitions regarding the 
connotations and denotations of big data remain unclear. In fact, the true meaning of defin-
ing big geodata is not to explicitly delineate what big geodata is, but to guide how to con-
duct big geodata analysis and how to overcome the limitations of big geodata in research. 
Mayer-Schonberger and Cukier (2013) defined the value of big data in their book “Big Data: 
A Revolution That Will Transform How We Live, Work, and Think”. Marr (2015) outlined 
the “5V” characteristics of big data, that is, volume, velocity, variety, value and veracity. The 
emergence of big data is mainly due to the rapid advances in sensor technology, networks 
and computing, thus leading to the key characteristics of large data volume, fast update ve-
locity and wide variety (the first 3Vs). However, big data are uploaded by volunteers on so-
cial media platforms (e.g., Facebook, Twitter, Weibo, WeChat) or exist as digital storage 
records (e.g., mobile phone, bank transactions, utility records). As a result, if using such data 
as the research object, then big data can be seen as non-purpose observation data. Therefore, 
such data sources contain much noise, which ultimately leads to low value density and poor 
veracity (the last 2Vs). In fact, the 5Vs represent only a descriptor of big data, not a defini-
tion of big data. 

In this paper, the essence of big data is considered to be the “full” coverage of sampling. 
Note that “full” here does not mean the samples fully cover the object without any space, but 
that the coverage substantially exceeds that of purposive sampling (here purposive sampling 
data are called “small data”). The “full” sampling information provided by big data exceeds 
the limitations of traditional sampling, which inevitably leads to a revolution in the mode of 
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research. “Full” coverage here involves the dimensions of time, space and attributes. Similar 
to other fields, big geodata have 5V features, but big geodata also have their own unique 
features, which will be discussed later. The connotations of big geodata contain at least the 
following two considerations: first, a distinguishing feature between big geodata and other 
disciplines lies in whether there are time and space attributes; second, a difference between 
big geodata and small data is the sample coverage, which was mentioned earlier. 

The unique connotations of big geodata originate from the mode of information acquisi-
tion, while the denotations are dependent on the means for information acquisition. Accord-
ing to the type of sensors used and the objects recorded, big geodata can be divided into two 
types: big earth observation data and big human behavior data. Among them, big earth ob-
servation data record the characteristics of elements of the earth’s surface, and the sensors 
are mainly satellite payload (e.g., aerospace or aviation-based) or surface monitoring devices, 
while the corresponding data include remote sensing imagery, unmanned aircraft imagery 
and various monitoring (or monitoring network) data. The big earth observation data are 
acquired mainly in active ways. Big human behavior data record various behavioral activi-
ties such as human mobility, socialization and consumption. The sensors are versatile and 
include mobile handsets, smart cards, social media applications and navigation sys-
tem-generated signals. Differing from big earth observation data, big human behavior data 
are acquired mostly in passive ways. The human behavior data can be regarded as footprints 
of human activity, which include mobile phone signaling data, taxi trajectory data, Internet 
of Things data and social media data. The focuses of big geo-observation data and big hu-
man behavior data are “land” and “human,” respectively. The relationship between human 
development and geographical environment has always been a central topic in geography, 
and the advance of big geodata makes it possible to combine these two types of big data, 
thus providing new resources, new dynamics and new perspectives for the study of hu-
man-land relationship in geography. The two types of data focus on different objects, and 
their data structure, granularity and expression are different, which brings new challenges 
for big geodata mining. 

3  Features of big geodata 
The differences between big data and small data have been clarified in the previous section. 
However, besides the “5V” features, do big geodata have other unique features? The answer 
to this question could be crucial for analysis. To this end, intrinsic features are discussed 
from the perspective of the mechanism of generating big geodata. On the one hand, com-
pared to small data, big geodata can be viewed as samples that cover fully the research ob-
ject. Full coverage includes mainly three aspects: finer granularity, higher density and larger 
scale. On the other hand, big geodata, especially human behavior big geodata, are typically 
acquired in a non-purpose way, which may lead to bias and uncertainty. As a result, the fea-
tures of big geodata can be summarized as spatiotemporal granularity, spatiotemporal scope, 
spatiotemporal density, spatiotemporal skewness and spatiotemporal precision, which will 
be explained in the following sections. 

3.1  Spatiotemporal granularity 

The spatiotemporal granularity is defined as the size of the support unit of geographic in-
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formation. The emergence of big geodata makes the granularity smaller. Due to different 
data acquisition methods, the granularity may vary depending on the different types of data. 
With regard to big earth observation data, the granularity refers to the pixel size. The mini-
fication of the granularity brought by big data can be seen in the increasing refinement of 
retrieval results for the ground object. For example, enhancement of the resolution of urban 
images makes the unit of the retrieved information finer, which is changed from the 
coarse-grained land parcel to the concrete building. In big human behavior data, the granu-
larity refers to the size of the statistical unit (Liu, 2016), and the change of granularity can be 
seen as the reduction of the statistical unit. Taking demographics as an example, in China’s 
census plan, the census zone is the smallest unit, which is a subdistrict in a city or town in a 
rural area. The size of the census zone ranges from a few square kilometers to tens of square 
kilometers, or even larger while the utilization of mobile phone data makes it possible to 
estimate population in a finer grid. Figure 1 shows the results for a fine scale urban demo-
graphic estimated from mobile phone data of Beijing (Liu et al., 2018). The unit of the 
demographic data in Figure 1 is a base station cell (which can be approximated as a Thiessen 
polygon generated according to the locations of the mobile phone base stations). The scale 
of the base station cell is about 200 m in the inner city. Similarly, using floating vehicle tra-
jectory data, the assessment of urban road congestion conditions can be refined to any time 
and any road segment (Zheng et al., 2011; Castro et al., 2012; Kong et al., 2016). When re-
trieving urban functions using big geodata, the fusion of WeChat location request data, taxi 
location data, POI data and Quickbird high-resolution images can downscale the functional 
patches to the building-level (Niu et al., 2017); household smart meter information, for ex-
ample, water consumption, makes it possible to estimate the age, working status and income  

 
 

Figure 1  Fine-scale demographic estimation using mobile phone data (Liu et al., 2018) 
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at the family-level (Newing et al., 2016). Overall, the refinement of the granularity of big 
geodata allows us to observe geographical phenomena at a microscale and thus provides new 
possibilities for studying detailed features and formation mechanisms. 

3.2  Spatiotemporal scope 

Traditionally, small geodata, due to the high cost of acquisition, are often restricted to local 
areas, or there is a balance between granularity and scale. In the era of big data, some IT 
companies take advantage of the Internet to obtain data at large scale meaning at a national 
or even global level, while at the same time maintaining high resolution. This approach thus 
ensures that the data cover the large scale and at high resolution. This type of global data 
product has been applied in many research fields, including global night-time remote sens-
ing data products (NASA, 2017), domestic 30 m resolution global land use data (Chen et al., 
2015) and global long-term sequence leaf area index products (Liu and Liu, 2015). As to the 
big human behavior data, the coverage can also be unprecedentedly large, for example, the 
Spring Festival travel map of China (excluding Taiwan, Hong Kong and Macao) released by 
Baidu (http://qianxi.baidu.com), the national taxi hot map (excluding Taiwan, Hong Kong 
and Macao) published by Didi (https://www.didiglobal.com/) and the global user network 
published by Facebook (http://fbmap.bitaesthetics.com/). From the above analysis, it can be 
seen that big geodata broadens the scope for research on global change and social laws at the 
macro level. 

3.3  Spatiotemporal density 

In addition to the limitation of coverage, traditional geographic research often faces issues 
regarding the problem of samples of sparse density due to the high cost of sampling. For this 
reason, the description of geographic distribution based on finite samples usually requires 
methods of spatial estimation and inference, such as Kriging interpolation (Oliver and Web-
ster, 1990; Stein, 2012), geographically weighted regression (Brunsdon et al., 1996; Bruns-
don et al., 1998) and environmental factor models (Zhu et al., 2010a; 2010b). Although spa-
tial statistical methods can help to reconstruct distributions with finite samples based on 
spatial autocorrelation, the result cannot replace the true distribution of the attribute. Differ-
ing to small data, high-density sampling is one of the fundamental features of big geodata. 
Specifically, in big earth observation data, with development of sensor technology, the reso-
lution of images has becoming finer and the pixel density has increased, thus resulting in 
more detailed information being observed. Given the ongoing and continuous upgrading of 
the global earth observation network, the number of monitoring stations continues to in-
crease. For example, the number of meteorological stations has increased from around 8000 
(Zhang, 2010) in the 1960s to more than 100,000 in recent times (NOAA, 2018). The latest 
figure equates to one observatory per 1490 km2; the number of Argo buoys for oceanic ob-
servation has increased to 3762 as of July 2018 since first deployed in 2000 (Qian and 
Cheng, 2018). Compared to big human behavior data, the density of traditional “small data” 
obtained by questionnaires is very low although such sources do have fine granularity. Tak-
ing mobile phone data and Tencent location request data as examples, the users effectively 
cover the majority of the population. With the increasing popularity of smart cards and use 
of Internet applications, the density of big human behavior data continues to grow; thus with 
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increase in the density of big data, geographical phenomena will increasingly be observed in 
more detail. 

3.4  Spatiotemporal bias 

Although big geodata has demonstrated advantages over “small data” in terms of granularity, 
scope and density, there are certain flaws, which inevitably incur criticism. Specifically, bias 
exists ubiquitously in big human behavior data in terms of time, space and attributes. Taking 
Weibo data as an example, many studies use the data to infer urban functions and human 
behavior. In fact, serious bias exists in Weibo data mainly with respect to age, gender, space 
and content. Specifically, the bias due to age is that users of Weibo are mainly those between 
18 and 30 years old; and a gender bias is that women are more inclined to use Weibo than 
men (Yuan et al., 2018); a space bias refers to the fact that in China the usage ratio in coastal 
areas is higher than in the central and western regions. Moreover, Weibo data contain more 
posts on entertainment, education and finance (Data Center of Sina Micro-blog, 2017) than 
other topics, such as science and technology. To see how the bias of big geodata affects re-
search, Zhao et al. (2016) compared the statistical results of human activities obtained from 
full samples with that from partially sampled mobile phone data, and found that there was a 
significant difference between the two sources in terms of the moving distance, the radius of 
gyration and the mobility entropy. As a result, it is a risk to treat the results derived from 
biased big data as true facts. Given that the prevalence of bias in big geodata may lead to 
inappropriate or invalid conclusions, the uncertainties associated with the results should be 
fully evaluated when using big geodata. 

3.5  Spatiotemporal precision 

Another aspect that cannot be ignored in big geodata is the low precision. The precision 
problem is ubiquitous in big data, especially for big geodata, and sometimes can even lead to 
wrong conclusions being made. Regarding big earth observation data, the precision problem 
has been extensively studied (Congalton, 1991), and will not be considered here. As to big 
human behavior data, some of the data are acquired in a passive way (e.g., mobile phone 
data have been used to estimate the urban population, but have not been collected for that 
purpose) and some in an active way (e.g., microblog data have been used to measure the 
mood of the city, but the data are uploaded spontaneously by users). No matter what the 
mode of data generation is, the data are smeared with various types of errors in terms of 
space, time and attributes. Taking mobile phone signaling data as an example, due to the 
limitations of base station capacity, the mobile phone in use may connect to other free base 
stations rather than the nearest base station. Thus, a spatial error is generated if we locate the 
handset in the cell of the nearest base station. Similarly, in social media data, the location, 
time and content of events uploaded by users are not necessarily a true description of the 
event. Therefore, unlike purposive sampling data, the errors in big geodata do not only 
originate from technical issues, but also from uncontrollable factors, or even deliberate fac-
tors (Zhao and Zhang, 2018). The existence of errors in big geodata often leads to incom-
plete or even wrong knowledge being generated. Google’s success and failure in flu predic-
tion is one such notable example (Ginsberg et al., 2009; Lazer et al., 2014). 

The impact of big geodata comes from its fine granularity, large scope and high density, 
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and this is difficult to obtain from traditional small data, while the shortcomings of bias and 
low precision can be compensated for by use of small data. Therefore, big geodata and small 
data have their own advantages and disadvantages and one cannot completely replace the 
other. The combination of the two may draw on the strong points of big data to offset any 
weaknesses. In the application of big geodata, more attention should be paid to its limita-
tions so as to avoid the generation of errors and abuse of the data. 

4  Core issues of big geodata mining 
As we know, the value of data lies in the knowledge hidden in it (Benz et al., 2004; Fayyad 
et al., 1996). To discover knowledge from data, data mining is essential. How can data min-
ing techniques be used to reveal the geographical knowledge hidden in big geodata? To an-
swer this question, we need to clarify four aspects. The first aspect concerns the expression 
of big geodata. Big earth observation data are conventionally structured such that the data 
are obtained from well-designed sensor systems. Differing from that, big human behavior 
data are obtained via stored records of data which originate from different human behaviors, 
and there are different types and forms of behavior which are difficult to be structured. 
Therefore, data expression is a prerequisite in big geodata mining. The second aspect is the 
definition of big geodata mining which may clarify the objective and essence of mining. As 
already mentioned, big geodata are complex in terms of expression, structure and content, 
which means that only when the objective and essence of mining are ascertained, can big 
geodata mining be developed into a branch of geographical information science or even an 
independent discipline. The third aspect concerns the scalability of big geodata. Having fea-
tures such as fine granularity, wide scope and high density, big geodata contain multi-scale 
geographical information incomparable with traditional small data. In such cases, the ques-
tion of how to deal with the scalability of big geodata mining should be clarified before 
processing big geodata. Last, but not least, the relationship between big geodata mining and 
geography needs to be clarified. Faced with big geodata, a new information source for geo-
graphic research, it is important to determine the relationship between big geodata mining 
and geographical science, especially the role that big geodata mining plays in the practice of 
research. 

4.1  Expression of big geodata: location space and flow space 

The objects that big earth observation data focus are on the surface of the earth, while the 
subjects of big human behavior data are human. The interaction between the earth’s surface 
and human being can be viewed as relationships between the subjects and the environment. 
The basis of earth observation data is location, on which the variation of geographical at-
tributes can be observed and measured. In geographical research, earth observation data can 
be viewed as containing the environmental factors which affect human behavior and activi-
ties. This location-based data can be expressed in the framework of location space, where 
location is the basic element and Euclidean distance is the basic measurement (Sun and Lu, 
2005). In location space, location is the basic unit for the expression of geographical features 
and geographical phenomena appear as the instantaneous state of geographical features (Han 
et al., 2011). Location space is the expression framework of traditional maps and locations 
and the spatial relationships are the essence of the spatiotemporal pattern. One major objec-
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tive of big geodata mining is to reveal the patterns in location space. 
Big human behavior data are a reflection of human activities. In human-related activities 

and interactions, flow can be seen as a basic unit (flow can be defined as a point pair con-
taining an origin (O) point and a destination (D) point) which includes human flow, com-
modity flow, information flow, capital flow and relationship flow. A flow can be thought of 
as an interaction between two nodes (locations) (Castells, 1999; Goodchild et al., 2007). For 
big human behavior data, the distance between O and D is no longer the only measure of 
their relationship, with this coexisting with various other measures such as time, cost and 
attractiveness (Batty, 2013). In human behavior data, the focus on humans is not limited to 
changes in locations but includes various travel behaviors and social relationships. The 
weakening of the distance effect and the complex flow patterns make the location space un-
able to adapt to the expression and analysis of big human behavior data. To solve this prob-
lem, a new conceptual space regarding flow is needed. Here, we define it as flow space, 
where the flow is seen as a basic unit, and multiple flows between different nodes forms a 
network. In the flow space, the core is the interaction between locations, and the purpose of 
data mining in flow space is to extract the interaction patterns. However, at present, it is dif-
ficult to express complex flow patterns on a traditional map. To achieve this, a holographic 
map and virtual reality technology will become a new analytical framework for describing 
flow patterns. The flow space is different from location space in terms of measurement, na-
ture and the analytical model, therefore, research on the extraction method for the spatio-
temporal flow pattern is an important direction of big geodata mining. 

4.2  Content of big geodata mining: patterns and relationships 

The purpose of geographical data mining is to find rules and exceptions between geographi-
cal objects as well as between geographical objects and the environment. Accordingly, the 
content of big geodata mining can also be divided into two parts: the first part is the mining 
of geographical spatiotemporal patterns, the essence of which is to discover the spatiotem-
poral distributions of geographical objects; the second is the mining of geographical spatio-
temporal relations, the essence of which is to discover the relationships between the geo-
graphical objects and their environmental factors. Due to the distinct features of big geodata, 
the contents of mining big geodata are different from those of “small data”. 
4.2.1  Spatiotemporal patterns in geography 

The currently acknowledged theorems in geography are the first law of spatial correlation 
and the second law of spatial heterogeneity (Tobler, 1970; Goodchild, 2004). The meanings 
of the two theorems seem to be opposite, but actually these two theorems jointly describe 
geographical phenomena from two standpoints: objects that are near to each other are con-
sidered similar, but they are still different from each other. In location space, the first law 
describes the relationship between object similarity and distance, while heterogeneity de-
scribes spatial non-stationarity. In flow space, spatial correlation is represented by the exis-
tence of the spatial network structure, that is, the flow of close origins and destinations con-
stitutes the connections between different locations, and the strength of the connection is 
related to different variables such as distance. The heterogeneity is represented by the dis-
crepancy of flows between the spatial locations. The essence of spatiotemporal pattern min-
ing of big geodata is to reveal the “similarity and heterogeneity” rules and the resulting spa-
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tiotemporal distribution caused by spatiotemporal correlation and heterogeneity. The 
so-called “heterogeneity” refers to the difference between geographical objects, and the 
“similarity” refers to the commonality of different objects. Taking the pattern mining of 
seismic data as an example, on the one hand, it is necessary to determine the “heterogene-
ity-similarity” rules, based on which clustered and background earthquakes can be distin-
guished; on the other hand, on the basis of the “heterogeneity-similarity” rule found, the 
spatial distribution and characteristics of clustered earthquakes and background can be de-
termined. The former is related to the inference of the “heterogeneity-similarity” rule, spe-
cifically, “similar” earthquakes may belong to the same statistical distribution, and the “het-
erogeneous” earthquakes may be divided into different statistical distributions; the latter is 
related to the extraction of spatiotemporal distribution, but in fact, the spatiotemporal distri-
butions of clustered earthquakes and background can be seen as a comprehensive result of 
the law of spatial correlation and that of heterogeneity. The main tasks of traditional geo-
graphic data mining include the discrimination of spatiotemporal heterogeneity, the extrac-
tion of geographic abnormal patterns, the identification of spatial distribution patterns and 
the extraction of geographic evolution trends, while the changes brought by big geodata are 
concentrated on the types and scales of the pattern. As to the type, in addition to heterogene-
ity and distribution of grid, point and field, big geodata mining will place emphasis on com-
plex patterns such as structure and heterogeneity of spatiotemporal sequence, flow and net-
work; as to the scale, given the characteristics of fine granularity, wide scope and high den-
sity, big geodata mining will result in more macroscopic, more comprehensive and even 
finer patterns. 
4.2.2  Geographical spatiotemporal relationship 

The relationships between geographic objects and environmental factors usually appear as 
correlations or associations. Correlation is often used to characterize the quantitative rela-
tionship between attributes of geographic objects and their environmental factors, say the 
relationship between the level of soil lead (Pb) pollution and its proximity to highways (Du 
et al., 2007); while association often describes the dependencies between geographic objects 
that exist or occur simultaneously, such as the relationship between theft and burglary cases 
(Chen et al., 2015). Two factors should be clarified when addressing the geographical spati-
otemporal relationship. Taking leaded gasoline and the relationship between lead pollution 
and the proximity to highway as an example of the interaction between variables, here the 
exhaust emissions of vehicles on highways can lead to an increase in the lead content in the 
soil adjacent to the highway; another example is the relationship between the change in soil 
lead content and its distance to the source of pollution, that is, the closer the soil is to the 
highway, the higher the lead content. The changes brought by big geodata mainly lies in the 
change of relationship types and the transformation between different relationships. Specifi-
cally, on the one hand, the types of relationships between variables are more diverse and 
complex compared to those of small data, while nonlinear, uncertain, and multivariate spati-
otemporal relationships become one of the core issues of big geodata mining (Cheng et al., 
2018); on the other hand, except for spatiotemporal relationship mining under the same 
space, the inversion of information between different spaces (such as social space, physical 
space, and emotional space) has become one of the main features of big data mining. Such 
relationship transformations between different spaces have also become the core of big data 
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thought; for instance, the inversion of economic conditions from remote sensing data (Keola 
et al., 2015), the utilization of “hot” search words to predict influenza trends (Ginsberg et al., 
2009) and the inference of urban land use from mobile phone data (Pei et al., 2014). 

It should be noted that compared with small data, big geodata may demonstrate “stronger” 
spatiotemporal correlation. As a result, it is relatively easy to “discover” various spatiotem-
poral relationships from them. Given that the causes of these relationships are often very 
complicated, whether there is a causal relationship or not needs to be carefully checked for. 
Taking the co-occurrence of theft and burglary cases as an example, the actual reason for 
their co-occurrence may be that the natural and social environment in a particular region is 
poor, thus resulting in high incidences of various types of crimes, however, there is no ob-
vious causal relationship between these various crimes (Chen et al., 2015). 

4.3  Inner structure of the geographic pattern: scale and superposition 

As mentioned above, the purpose of big geodata mining is to extract the spatiotemporal pat-
terns and the spatiotemporal relationships. Numerous studies have shown that geographical 
patterns, distributions and processes are all scale dependent. In other words, any geographic 
pattern can occur at a certain scale, so big geodata mining is inseparable from scale. Spe-
cifically, the purpose of pattern mining is to identify the groups such that objects are similar 
for the same group and different between different groups. The seeming contradiction be-
tween heterogeneity and homogeneity can be transformed by a change of scale. For instance, 
Figure 2 displays the transformation from heterogeneity to homogeneity at different obser-
vation scales for point process data; that is, a point pattern can be seen as heterogeneous at a 
large scale (Figure 2a), while at a small scale a local part of the pattern can be viewed as 
homogeneous (Figure 2b). Thus, large-scale complex patterns can be viewed as the superpo-
sition of several local homogeneous patterns. Similarly, the spatiotemporal relationship in 
big geodata is also scale dependent, in other words, the scale of the geographic elements 
determines the scale of correlation in them. Specifically, the variation at a large scale deter-
mines the overall trend while the variation at a small scale determines the local correlation. 
The superposition of patterns at different scales finally forms the overall complex relation-
ship. For example, the topographic and climatic factors at a large scale determine the mac-
roscopic pattern of China’s population distribution, while the characteristics of mesoscale 
factors (e.g., local landscape, topography, traffic) determine the local distribution of the 
population. Multi-scale superposition of multiple factors ultimately leads to a complex spa-
tial distribution of geographic phenomena. 

The scalability in data mining can be seen as the difference between patterns mined at 
different observation scales. Based on this, Pei et al. (2012; 2013) proposed the decomposi-
tion theory of point processes. The main idea behind the theory is that at a given point geo-
graphical phenomena can be regarded as the superposition of n homogenous point processes 
of different densities. Specifically, on the one hand, the spatiotemporal distribution can be 
seen as the overlay of homogenous processes at different scales; on the other hand, the oc-
currence of the point process phenomenon can also be viewed as the outcome of the super-
position of factors at different scales. For example, the seismicity in a region can be viewed 
as the superposition of background earthquakes, fault induced earthquakes and local seismic 
sequences. At the same time, the occurrence of earthquakes can also be treated as the out- 
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Figure 2  Transformation between homogeneity and heterogeneity of the geographical point process at differ-
ence scales: (a) heterogeneity at a large scale; (b) homogeneity at a small scale. 

 
come of the superposition of tectonic movements at different scales. The above analysis 
suggests that usually multi-scale features exist in big geodata ranging from fine to coarse 
features. Given that geographical patterns and their mechanisms are thought of as the out-
come of comprehensive superposition, then, in turn, big geodata mining can be seen as the 
process of decomposing patterns and relationships. 

4.4  Knowledge discovered from big geodata: human-environment relationships  
behind geographical patterns 

Geodata mining can generally be divided into two stages, the discovery of non-trivial pat-
terns and the exploration of the causes of the patterns. Concerning big geodata mining, the 
purpose of big earth observation data mining is to uncover the patterns of elements of the 
earth’s surface, while that of big human behavior data mining is to reveal the human behav-
ior patterns. After that, a key question is what are the underlying mechanisms behind the 
patterns? Big geodata, especially the emergence of big human behavior data, constitutes the 
complete condition for revealing the mechanism of geographic patterns from the perspective 
of human-environment relationships. Landuse patterns, reflecting the characteristics of ele-
ments of the earth’s surface, are definitely the result of human behavior. Mobile phone call 
data record communication behavior and the data may vary for different areas, but the data 
indeed contain information about the urban function (Pei et al., 2014). The patterns behind 
big geodata can be attributed to the relationships between humans and the environment. 
Specifically, the environmental patterns imply human factors while the patterns in human 
behavior are affected by the environment. Therefore, deriving the human-environment rela-
tionships in geographical patterns is a connotation of big geodata mining. 

Geographic research has evolved from the first paradigm to the fourth paradigm, i.e., the 
empirical paradigm (first paradigm), the positivistic paradigm (second paradigm), the sys-
tem simulation paradigm (the third paradigm) and the data-driven paradigm (the fourth 
paradigm) (Cheng et al., 2018). Current geographic research is more dependent on big geo-
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data and the associated analytical methods. Big geodata mining has been recognized as an 
important tool for the discovery of geographical knowledge. Note that although big geodata 
mining can generate “knowledge” such as geographic patterns and their relation to the envi-
ronment, the question of whether there is causality in the relationships as well as authenticity 
in the patterns of “knowledge” does require strict verification through simulation, observa-
tion and experimentation. 

5  Big geodata mining methods 
Given the dramatic growth of big geodata, various data mining methods have been devel-
oped to discover the non-trivial knowledge. These methods can be categorized in different 
ways according to whether there is a dependency or not on prior knowledge, that is, the 
methods can be categorized as a model-driven approach or a data-driven approach (Niemei-
jer, 2002; Miller and Goodchild, 2015). According to the mining tasks, methods can be 
categorized into spatial clustering, spatial classification, spatial association rules mining, 
spatial serial rules mining, spatial dependency rules mining, spatial outlier detection, spatial 
hotspot and trend analysis (Li et al., 2001; 2002; Mennis and Guo, 2009; Shekhar et al., 
2011). According to the mining objects, they can be classified into relational data mining, 
object-oriented data mining, image data mining, text data mining, multimedia data mining 
and network data mining (Chen et al., 1996; Džeroski, 2009). According to the mining 
models, they can be grouped into machine learning methods, statistical methods, neural 
networks and database methods (Jun Lee and Siau, 2001; Wang et al., 2005; Reddy, 2011). 
In this paper, the methods are classified according to the mining objective. The first category 
is classification mining, which includes spatial clustering (Ester et al., 1996; Han et al., 
2009), spatial classification (Koperski et al., 1998), spatial decision tree (Friedl and Brodley, 
1997) and point process decomposition (Pei et al., 2012). The classification mining methods 
are generally used to differentiate geographic objects and then to extract the spatial-temporal 
patterns. The second is relationship mining, such as association rules mining (Koperski and 
Han, 1995; Huang et al., 2004), principal component analysis (Byrne et al., 1980; Novembre 
et al., 2008) and regression analysis (Beale et al., 2010; McMillen, 2004). These approaches 
are usually used to determine the relationship between different spatial-temporal variables, 
especially the relationship between geographic objects and the environment. Moreover, there 
are some methods that can be assigned into either classification mining or relationship min-
ing, such as neural networks (Atkinson and Tatnall, 1997; Li and Yeh, 2002), support vector 
machine (Pal and Mather, 2005; Brereton and Lloyd, 2010) and random forest (Gislason et 
al., 2006; Mutanga et al., 2012). Besides data mining methods, some optimization methods 
are also used extensively to estimate the coefficients of the mining model, such as the ex-
pectation-maximization algorithm (Moon, 1996) and the Markov chain Monte Carlo 
(MCMC) algorithm (Andrieu et al., 2003). Meanwhile, given the complexity of geographi-
cal phenomena, recently artificial intelligence (AI) methods, such as deep learning (LeCun 
et al., 2015), have been used extensively in big geodata mining. However, the AI methods 
do not belong to big geodata mining methods and only when combined with other data min-
ing methods, can they be seen as part of the data mining toolkit. 

Due to the “5V” and other five features of big geodata, several problems need to be ad-
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dressed when applying traditional data mining methods to big geodata mining. First, large 
volumes of data pose a serious challenge to data mining methods. Big data equate to high 
computational cost, therefore, how to conduct parallel and distributed computing is an es-
sential problem that needs to be solved. Second, the emergence of big data often produces 
two types of effects when applying the methods to complex questions. On the one hand, 
some models can be simplified as the volume of data increases. For example, traditional 
methods using the shortest path analysis mainly depend on the complex optimization model, 
while, with the emergence of big GPS data, the recoding of the trajectories of floating cars 
makes it a simple query (Yuan et al., 2013; Dai et al., 2015). On the other hand, big geodata 
will result in the development of more complex models. For example, the emergence of big 
GPS data generates problems like “how to share taxis in order to save energy” (Vazifeh et 
al., 2018). Third, due to the problems of bias and precision, evaluation needs to be per-
formed rigorously to ensure the validity of the results. 

6  Conclusion 
The coming of the big data era has significantly influenced the development of geographic 
research. As a special type of big data, the challenges that big geodata mining faces mainly 
originate from three sources. The first is the aggregation of multi-source big geodata. Big 
geodata are varied in terms of granularity, presentation and structure. How to realize “verti-
cal” fusion through joining non-spatial attributes and “horizontal” integration by extending 
the spatiotemporal scope will become the key to mining big geodata in the future. The sec-
ond is uncertainties caused by the bias and precision of big geodata. How to evaluate and 
apply the mining results is an unavoidable challenge. Third, producing “non-trivial” knowl-
edge is a tough task for big geodata mining. Current research has generated some notable 
achievements in statistical physics and AI, nevertheless, the role, which data mining plays in 
the geographic sciences, has not been widely recognized as yet. For instance, although the 
uneven pattern of demographics in China can be revealed by examination of the Tencent 
location request data (https://heat.qq.com/index.php), and as spectacular as it is, this basic 
pattern was revealed as the “Hu Line” several decades ago. 

Facing the challenges mentioned above, the future of big geodata mining seems not diffi-
cult to predict. First, big geodata mining should address and solve the basic problems of 
geographic science at the large scale with a finer granularity and with more comprehensive 
data. Global change and its impact on society, human behavior and its relationship to the 
environment, the social characteristics of the earth’s surface and urban dynamics are con-
sidered the hotspots for future study. Second, big geodata mining methods will evolve by 
adapting themselves to the “5Vs” and the other five features mentioned above. On the one 
hand, only more efficient and robust algorithms can be adapted to undertake the complex big 
geodata mining tasks; on the other hand, new AI methods, including training with large 
volume samples, will introduce new expectations for solving complex geographical prob-
lems. Third, research on big earth observation data will extend from the traditional observa-
tions of the earth’s surface to the perceptions of social activities, and may bring more scien-
tific and commercial applications, whereas research on big human behavior data will extend 
from the perception of social activities to the retrieval of earth surface features, and become 
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more widely used in urban studies. The combination of these two types of big data will 
eventually form a breakthrough to reveal the human-land relationships in geographic sci-
ences. 
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